p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.62C22, C24.425C23, C23.636C24, C22.4092+ 1+4, (C2×C42)⋊9C22, C23⋊Q8⋊52C2, (C22×Q8)⋊9C22, C24⋊3C4.14C2, C23.180(C4○D4), (C22×C4).563C23, C23.11D4⋊103C2, C2.C42⋊41C22, C2.8(C24⋊C22), C24.C22⋊151C2, C2.78(C22.32C24), C2.88(C22.45C24), (C2×C4⋊C4)⋊37C22, C22.497(C2×C4○D4), (C2×C22⋊C4).298C22, SmallGroup(128,1468)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.636C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=ca=ac, e2=ba=ab, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 676 in 280 conjugacy classes, 88 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×Q8, C25, C24⋊3C4, C24.C22, C23⋊Q8, C23.11D4, C23.636C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C22.32C24, C22.45C24, C24⋊C22, C23.636C24
(1 10)(2 11)(3 12)(4 9)(5 21)(6 22)(7 23)(8 24)(13 27)(14 28)(15 25)(16 26)(17 32)(18 29)(19 30)(20 31)
(1 20)(2 17)(3 18)(4 19)(5 15)(6 16)(7 13)(8 14)(9 30)(10 31)(11 32)(12 29)(21 25)(22 26)(23 27)(24 28)
(1 12)(2 9)(3 10)(4 11)(5 23)(6 24)(7 21)(8 22)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5 31 25)(2 22 32 16)(3 7 29 27)(4 24 30 14)(6 17 26 11)(8 19 28 9)(10 21 20 15)(12 23 18 13)
(1 29)(2 9)(3 31)(4 11)(5 15)(7 13)(10 18)(12 20)(17 30)(19 32)(21 25)(23 27)
(1 12)(2 19)(3 10)(4 17)(5 7)(6 28)(8 26)(9 32)(11 30)(13 15)(14 22)(16 24)(18 31)(20 29)(21 23)(25 27)
G:=sub<Sym(32)| (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31), (1,20)(2,17)(3,18)(4,19)(5,15)(6,16)(7,13)(8,14)(9,30)(10,31)(11,32)(12,29)(21,25)(22,26)(23,27)(24,28), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5,31,25)(2,22,32,16)(3,7,29,27)(4,24,30,14)(6,17,26,11)(8,19,28,9)(10,21,20,15)(12,23,18,13), (1,29)(2,9)(3,31)(4,11)(5,15)(7,13)(10,18)(12,20)(17,30)(19,32)(21,25)(23,27), (1,12)(2,19)(3,10)(4,17)(5,7)(6,28)(8,26)(9,32)(11,30)(13,15)(14,22)(16,24)(18,31)(20,29)(21,23)(25,27)>;
G:=Group( (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31), (1,20)(2,17)(3,18)(4,19)(5,15)(6,16)(7,13)(8,14)(9,30)(10,31)(11,32)(12,29)(21,25)(22,26)(23,27)(24,28), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5,31,25)(2,22,32,16)(3,7,29,27)(4,24,30,14)(6,17,26,11)(8,19,28,9)(10,21,20,15)(12,23,18,13), (1,29)(2,9)(3,31)(4,11)(5,15)(7,13)(10,18)(12,20)(17,30)(19,32)(21,25)(23,27), (1,12)(2,19)(3,10)(4,17)(5,7)(6,28)(8,26)(9,32)(11,30)(13,15)(14,22)(16,24)(18,31)(20,29)(21,23)(25,27) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,21),(6,22),(7,23),(8,24),(13,27),(14,28),(15,25),(16,26),(17,32),(18,29),(19,30),(20,31)], [(1,20),(2,17),(3,18),(4,19),(5,15),(6,16),(7,13),(8,14),(9,30),(10,31),(11,32),(12,29),(21,25),(22,26),(23,27),(24,28)], [(1,12),(2,9),(3,10),(4,11),(5,23),(6,24),(7,21),(8,22),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5,31,25),(2,22,32,16),(3,7,29,27),(4,24,30,14),(6,17,26,11),(8,19,28,9),(10,21,20,15),(12,23,18,13)], [(1,29),(2,9),(3,31),(4,11),(5,15),(7,13),(10,18),(12,20),(17,30),(19,32),(21,25),(23,27)], [(1,12),(2,19),(3,10),(4,17),(5,7),(6,28),(8,26),(9,32),(11,30),(13,15),(14,22),(16,24),(18,31),(20,29),(21,23),(25,27)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | ··· | 4L | 4M | ··· | 4R |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C23.636C24 | C24⋊3C4 | C24.C22 | C23⋊Q8 | C23.11D4 | C23 | C22 |
# reps | 1 | 3 | 6 | 3 | 3 | 12 | 4 |
Matrix representation of C23.636C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C23.636C24 in GAP, Magma, Sage, TeX
C_2^3._{636}C_2^4
% in TeX
G:=Group("C2^3.636C2^4");
// GroupNames label
G:=SmallGroup(128,1468);
// by ID
G=gap.SmallGroup(128,1468);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,344,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c*a=a*c,e^2=b*a=a*b,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations